Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
Bone Marrow Transplant ; 59(5): 615-624, 2024 May.
Article in English | MEDLINE | ID: mdl-38347187

ABSTRACT

Allogeneic hematopoietic cell transplantation (allo-HCT) offers a curative option for patients with certain non-malignant hematological diseases. High-dose post-transplant cyclophosphamide (PT-Cy) (200 mg/kg) and sirolimus (3 mg/kg), (HiC) synergistically induce stable mixed chimerism. Further, sirolimus and cytotoxic T lymphocyte-associated antigen-4 immunoglobulin (CTLA4-Ig), also known as Abatacept (Aba), promote immune tolerance and allograft survival. Here, in a major histocompatibility complex (MHC)-mismatched allo-HCT murine model, we combined Aba and/or T-cell depleting anti-Thy1.2 (Thy) with a lower dose of PT-Cy (50 mg/kg) and Sirolimus (3 mg/kg), (LoC). While mice in the LoC group showed graft rejection, the addition of Thy to LoC induced similar donor chimerism levels when compared to the HiC group. However, the addition of Aba to LoC led to graft acceptance only in younger mice. When Thy was added to the LoC+Aba setting, graft acceptance was restored in both age groups. Engrafted groups displayed significantly reduced frequencies of recipient-specific interferon-γ-producing T cells as well as an increased frequency in regulatory T cells (Tregs) except in the LoC+Aba group. Splenocytes from engrafted mice showed no proliferation upon restimulation with Balb/c stimulators. Collectively, in combination with Aba or Thy, LoC may be considered to reduce graft rejection in patients who undergo allo-HCT.


Subject(s)
Abatacept , Cyclophosphamide , Lymphocyte Depletion , Sirolimus , Animals , Cyclophosphamide/pharmacology , Sirolimus/pharmacology , Mice , Abatacept/pharmacology , Abatacept/therapeutic use , Hematopoietic Stem Cell Transplantation/methods , Mice, Inbred BALB C , Transplantation Chimera , Transplantation, Homologous/methods , Allografts
3.
Obesity (Silver Spring) ; 31(2): 466-478, 2023 02.
Article in English | MEDLINE | ID: mdl-36628649

ABSTRACT

OBJECTIVE: Colchicine is known to reduce inflammation and improve endothelial cell function and atherosclerosis in obesity, but there is little knowledge of the specific circulating leukocyte populations that are modulated by colchicine. METHODS: A secondary analysis of a double-blind randomized controlled trial of colchicine 0.6 mg or placebo twice daily for 3 months on circulating leukocyte populations and regulation of the immune secretome in 35 adults with obesity was performed. RESULTS: Colchicine altered multiple innate immune cell populations, including dendritic cells and lymphoid progenitor cells, monocytes, and natural killer cells when compared with placebo. Among all subjects and within the colchicine group, changes in natural killer cells were significantly positively associated with reductions in biomarkers of inflammation, including cyclooxygenase 2, pulmonary surfactant-associated protein D, myeloperoxidase, proteinase 3, interleukin-16, and resistin. Changes in dendritic cells were positively correlated with changes in serum heart-type fatty acid-binding protein concentrations. Additionally, colchicine treatment reduced cluster of differentiation (CD) CD4+ T effector cells and CD8+ T cytotoxic cells. Conversely, colchicine increased CD4+ and CD8+ T central memory cells and activated CD38High CD8+ T cells. Changes in CD4+ T effector cells were associated with changes in serum heart-type fatty acid-binding protein. CONCLUSIONS: In adults with obesity, colchicine significantly affects circulating leukocyte populations involved in both innate and adaptive immune systems along with the associated inflammatory secretome.


Subject(s)
Colchicine , Leukocytes, Mononuclear , Adult , Humans , Colchicine/pharmacology , Colchicine/therapeutic use , Obesity/complications , Inflammation/metabolism , Fatty Acid-Binding Proteins/therapeutic use
4.
Am J Physiol Gastrointest Liver Physiol ; 324(3): G177-G189, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36537709

ABSTRACT

Small intestinal neuroendocrine tumors (SI-NETs) are serotonin-secreting well-differentiated neuroendocrine tumors of putative enterochromaffin (EC) cell origin. However, EC cell-derived tumorigenesis remains poorly understood. Here, we examined whether the gain of Myc and the loss of RB1 and Trp53 function in EC cells result in SI-NET using tryptophan hydroxylase 1 (TPH1) Cre-ERT2-driven RB1fl Trp53fl MycLSL (RPM) mice. TPH1-Cre-induced gain of Myc and loss of RB1 and Trp53 function resulted in endocrine or neuronal tumors in pancreas, lung, enteric neurons, and brain. Lineage tracing indicated that the cellular origin for these tumors was TPH1-expressing neuroendocrine, neuronal, or their precursor cells in these organs. However, despite that TPH1 is most highly expressed in EC cells of the small intestine, we observed no incidence of EC cell tumors. Instead, the tumor of epithelial cell origin in the intestine was exclusively nonendocrine adenocarcinoma, suggesting dedifferentiation of EC cells into intestinal stem cells (ISCs) as a cellular mechanism. Furthermore, ex vivo organoid studies indicated that loss of functions of Rb1 and Trp53 accelerated dedifferentiation of EC cells that were susceptible to apoptosis with expression of activated MycT58A, suggesting that the rare dedifferentiating cells escaping cell death went on to develop adenocarcinomas. Lineage tracing demonstrated that EC cells in the small intestine were short-lived compared with neuroendocrine or neuronal cells in other organs. In contrast, EC cell-derived ISCs were long-lasting and actively cycling and thus susceptible to transformation. These results suggest that tissue- and cell-specific properties of EC cells such as rapid cell turnover and homeostatic dedifferentiation, affect the fate and rate of tumorigenesis induced by genetic alterations and provide important insights into EC cell-derived tumorigenesis.NEW & NOTEWORTHY Small intestinal neuroendocrine tumors are of putative enterochromaffin (EC) cell origin and are the most common malignancy in the small intestine, followed by adenocarcinoma. However, the tumorigenesis of these tumor types remains poorly understood. The present lineage tracing studies showed that tissue- and cell-specific properties of EC cells such as rapid cell turnover and homeostatic dedifferentiation affect the fate and rate of tumorigenesis induced by genetic alterations toward a rare occurrence of adenocarcinoma.


Subject(s)
Adenocarcinoma , Intestinal Neoplasms , Neuroendocrine Tumors , Mice , Animals , Enterochromaffin Cells/metabolism , Intestine, Small/pathology , Carcinogenesis/metabolism , Cell Transformation, Neoplastic/metabolism , Intestinal Neoplasms/metabolism , Neuroendocrine Tumors/metabolism , Adenocarcinoma/genetics
5.
Front Immunol ; 12: 757279, 2021.
Article in English | MEDLINE | ID: mdl-34917079

ABSTRACT

Haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is a widely available curative option for patients with sickle cell disease (SCD). Our original non-myeloablative haplo-HSCT trial employing post-transplant (PT) cyclophosphamide had a low incidence of GVHD but had high rejection rates. Here, we aimed to evaluate immune reconstitution following haplo-HSCT and identify cytokines and cells associated with graft rejection/engraftment. 50 cytokines and 10 immune cell subsets were screened using multiplex-ELISA and flow cytometry, respectively, at baseline and PT-Days 30, 60, 100, and 180. We observed the most significant differences in cytokine levels between the engrafted and rejected groups at PT-Day 60, corresponding with clinical findings of secondary graft rejection. Of the 44 cytokines evaluated, plasma concentrations of 19 cytokines were different between the two groups at PT-Day 60. Factor analysis suggested two independent factors. The first factor (IL-17A, IL-10, IL-7, G-CSF, IL-2, MIP-1a, VEGF, and TGFb1 contributed significantly) was strongly associated with engraftment with OR = 2.7 (95%CI of 1.4 to 5.4), whereas the second factor (GROa and IL-18 contributed significantly) was not significantly associated with engraftment. Sufficient donor myeloid chimerism (DMC) is critical for the success of HSCT; here, we evaluated immune cells among high (H) DMC (DMC≥20%) and low (L) DMC (DMC<20%) groups along with engrafted and rejected groups. We found that early myeloid-derived suppressor cell (eMDSC) frequencies were elevated in engrafted patients and patients with HDMC at PT-Day 30 (P< 0.04 & P< 0.003, respectively). 9 of 20 patients were evaluated for the source of eMDSCs. The HDMC group had high mixed chimeric eMDSCs as compared to the LDMC group (P< 0.00001). We found a positive correlation between the frequencies of eMDSCs and Tregs at PT-Day 100 (r=0.72, P <0.0007); eMDSCs at BSL and Tregs at PT-Day 100 (r=0.63, P <0.004). Of 10 immune regulatory cells and 50 cytokines, we observed mixed chimeric eMDSCs and IL-17A, IL-10, IL-7, G-CSF, IL-2, MIP-1a, VEGF, TGFb1 as potential hits which could serve as prognostic markers in predicting allograft outcome towards engraftment following haploidentical HSCT employing post-transplant cyclophosphamide. The current findings need to be replicated and further explored in a larger cohort.


Subject(s)
Anemia, Sickle Cell/therapy , Hematopoietic Stem Cell Transplantation , Immune Reconstitution/immunology , Transplantation Chimera , Adult , Anemia, Sickle Cell/immunology , Chimerism , Cyclophosphamide/therapeutic use , Cytokines/immunology , Graft Rejection/immunology , Graft Survival/immunology , Humans , Immunosuppressive Agents/therapeutic use , Myeloid-Derived Suppressor Cells , Prognosis , Transplantation Conditioning , Transplantation, Haploidentical , Treatment Outcome
6.
Blood Cancer Discov ; 2(4): 319-325, 2021 07.
Article in English | MEDLINE | ID: mdl-34258102

ABSTRACT

Genetic mutations associated with acute myeloid leukemia (AML) also occur in age-related clonal hematopoiesis, often in the same individual. This makes confident assignment of detected variants to malignancy challenging. The issue is particularly crucial for AML post-treatment measurable residual disease monitoring, where results can be discordant between genetic sequencing and flow cytometry. We show here, that it is possible to distinguish AML from clonal hematopoiesis and to resolve the immunophenotypic identity of clonal architecture. To achieve this, we first design patient-specific DNA probes based on patient's whole-genome sequencing, and then use them for patient-personalized single-cell DNA sequencing with simultaneous single-cell antibody-oligonucleotide sequencing. Examples illustrate AML arising from DNMT3A and TET2 mutated clones as well as independently. The ability to personalize single-cell proteogenomic assessment for individual patients based on leukemia-specific genomic features has implications for ongoing AML precision medicine efforts.


Subject(s)
Leukemia, Myeloid, Acute , Proteogenomics , Clonal Hematopoiesis , Clone Cells/pathology , Humans , Leukemia, Myeloid, Acute/diagnosis , Neoplasm, Residual
7.
Nat Metab ; 3(3): 318-326, 2021 03.
Article in English | MEDLINE | ID: mdl-33723462

ABSTRACT

Intermittent fasting blunts inflammation in asthma1 and rheumatoid arthritis2, suggesting that fasting may be exploited as an immune-modulatory intervention. However, the mechanisms underpinning the anti-inflammatory effects of fasting are poorly characterized3-5. Here, we show that fasting in humans is sufficient to blunt CD4+ T helper cell responsiveness. RNA sequencing and flow cytometry immunophenotyping of peripheral blood mononuclear cells from volunteers subjected to overnight or 24-h fasting and 3 h of refeeding suggest that fasting blunts CD4+ T helper cell activation and differentiation. Transcriptomic analysis reveals that longer fasting has a more robust effect on CD4+ T-cell biology. Through bioinformatics analyses, we identify the transcription factor FOXO4 and its canonical target FK506-binding protein 5 (FKBP5) as a potential fasting-responsive regulatory axis. Genetic gain- or loss-of-function of FOXO4 and FKBP5 is sufficient to modulate TH1 and TH17 cytokine production. Moreover, we find that fasting-induced or genetic overexpression of FOXO4 and FKBP5 is sufficient to downregulate mammalian target of rapamycin complex 1 signalling and suppress signal transducer and activator of transcription 1/3 activation. Our results identify FOXO4-FKBP5 as a new fasting-induced, signal transducer and activator of transcription-mediated regulatory pathway to blunt human CD4+ T helper cell responsiveness.


Subject(s)
Cell Cycle Proteins/biosynthesis , Fasting , Forkhead Transcription Factors/biosynthesis , T-Lymphocytes, Helper-Inducer/immunology , Gene Expression Regulation , Humans , Sequence Analysis, RNA
9.
Nat Commun ; 11(1): 3461, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32651371

ABSTRACT

Leishmaniasis is a neglected tropical disease caused by Leishmania protozoa transmitted by infected sand flies. Vaccination through leishmanization with live Leishmania major has been used successfully but is no longer practiced because it resulted in occasional skin lesions. A second generation leishmanization is described here using a CRISPR genome edited L. major strain (LmCen-/-). Notably, LmCen-/- is a genetically engineered centrin gene knock-out mutant strain that is antibiotic resistant marker free and does not have detectable off-target mutations. Mice immunized with LmCen-/- have no visible lesions following challenge with L. major-infected sand flies, while non-immunized animals develop large and progressive lesions with a 2-log fold higher parasite burden. LmCen-/- immunization results in protection and an immune response comparable to leishmanization. LmCen-/- is safe since it is unable to cause disease in immunocompromised mice, induces robust host protection against vector sand fly challenge and because it is marker free, can be advanced to human vaccine trials.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Leishmania major/genetics , Leishmania major/pathogenicity , Vaccines, Attenuated/therapeutic use , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Dexamethasone/pharmacology , Female , Flow Cytometry , Gene Editing , Genetic Engineering , Humans , Immunosuppression Therapy , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Psychodidae/parasitology , Reverse Transcriptase Polymerase Chain Reaction
10.
Front Immunol ; 11: 363, 2020.
Article in English | MEDLINE | ID: mdl-32184787

ABSTRACT

Proliferation of dendritic cell (DC)-restricted progenitor cells in bone marrow compartment is tightly regulated at steady state and responds to multiple tissue-specific triggers during disturbed homeostasis such as obesity. DCs in the lung stem from a rapidly dividing DC-restricted progenitor cells and are effective at generating adaptive immune responses in allergic airway inflammation. Precisely, how DC-restricted progenitor expansion and differentiation are influenced by airway inflammation to maintain constant supply of myeloid DCs is poorly understood. Here we show that a high fat diet (HFD) induces oxidative stress and accelerates the expansion of DC- restricted progenitor cells in bone marrow and correlates with persistent induction of p38 mitogen activated protein kinase (MAPK), which is blocked with a selective p38α/ß MAPK inhibitor. Mice fed a HFD and sensitized to inhaled allergen house dust mite (HDM) led to alterations of DC- restricted progenitor cells that were characterized by increased expansion and seeding of lung DCs in airway inflammation. Mechanistically, we establish that the expansion induced by HFD dysregulates the expression of a disintegrin and metallopeptidase domain 17 (Adam17) and is required for p38 MAPK activation in DC-restricted progenitors. These results demonstrates that obesity produces persistent changes in DC precursors and that elevation of Adam17 expression is tightly coupled to p38 MAPK and is a key driver of proliferation. Altogether, these data provide phenotypic and mechanistic insight into dendritic cell supply chain in obesity-associated airway inflammation.


Subject(s)
Dendritic Cells/immunology , Hypersensitivity/immunology , Obesity/immunology , Pneumonia/immunology , Stem Cells/immunology , ADAM17 Protein/metabolism , Animals , Antigens, Dermatophagoides/immunology , Cells, Cultured , Diet, High-Fat , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism
11.
J Transl Med ; 18(1): 29, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31952533

ABSTRACT

BACKGROUND: Cardiovascular disease (CVD) is the leading cause of death in the world. Given the role of immune cells in atherosclerosis development and progression, effective methods for characterizing immune cell populations are needed, particularly among populations disproportionately at risk for CVD. RESULTS: By using a variety of antibodies combined in one staining protocol, we were able to identify granulocyte, lymphocyte, and monocyte sub-populations by CD-antigen expression from 500 µl of whole blood, enabling a more extensive comparison than what is possible with a complete blood count and differential (CBC). The flow cytometry panel was established and tested in a total of 29 healthy men and women. As a proof of principle, these 29 samples were split by their race/ethnicity: African-Americans (AA) (N = 14) and Caucasians (N = 15). We found in accordance with the literature that AA had fewer granulocytes and more lymphocytes when compared to Caucasians, though the proportion of total monocytes was similar in both groups. Several new differences between AA and Caucasians were noted that had not been previously described. For example, AA had a greater proportion of platelet adhesion on non-classical monocytes when compared to Caucasians, a cell-to-cell interaction described as crucially important in CVD. We also examined our flow panel in a clinical population of AA women with known CVD risk factors (N = 20). Several of the flow cytometry parameters that cannot be measured with the CBC displayed correlations with clinical CVD risk markers. For instance, Framingham Risk Score (FRS) calculated for each participant correlated with immune cell platelet aggregates (PA) (e.g. T cell PA ß = 0.59, p = 0.03 or non-classical monocyte PA ß = 0.54, p = 0.02) after adjustment for body mass index (BMI). CONCLUSION: A flow cytometry panel identified differences in granulocytes, monocytes, and lymphocytes between AA and Caucasians which may contribute to increased CVD risk in AA. Moreover, this flow panel identifies immune cell sub-populations and platelet aggregates associated with CVD risk. This flow cytometry panel may serve as an effective method for phenotyping immune cell populations involved in the development and progression of CVD.


Subject(s)
Blood Volume , Cardiovascular Diseases , Black or African American , Cardiovascular Diseases/diagnosis , Female , Granulocytes , Humans , Male , Monocytes , Pilot Projects , White People
13.
Methods Mol Biol ; 2032: 81-104, 2019.
Article in English | MEDLINE | ID: mdl-31522414

ABSTRACT

"Gating" refers to the selection of successive subpopulations of cells for analysis in flow cytometry. It is usually performed manually, based on expert knowledge of cell characteristics. However, there can be considerable disagreement in how gates should be applied, even between individuals experienced in the field. While clinical software often automates gating, and some guidelines do exist (especially for clinical assays), there are no comprehensive guidelines across the various types of immunological assays performed using flow cytometry. Here we attempt to provide such guidelines, focused on the most general and pervasive types of gates, why they are important, and what recommendations can be made regarding their use. We do so through the display of example data, collected by academic, government, and industry representatives. These guidelines should be of value to both novice and experienced flow cytometrists analyzing a wide variety of immunological assays.


Subject(s)
Cell Separation/methods , Flow Cytometry/methods , Immunoassay/methods , Humans , Software
14.
Chest ; 156(2): 298-307, 2019 08.
Article in English | MEDLINE | ID: mdl-31034819

ABSTRACT

BACKGROUND: Lymphangioleiomyomatosis (LAM) is a destructive metastasizing neoplasm of the lung characterized by proliferation of LAM cells in specialized lung nodules. LAM cells are characterized by expression of the prometastatic and cancer-initiating hyaluronan receptor CD44v6, and loss of heterozygosity (LOH) of TSC1 and TSC2. The circulating neoplastic LAM cells are thought to be involved in metastasis. Because LAM cells display properties of neoplastic, metastatic, and stem cell-like cancer cells, we hypothesized that elevated aldehyde dehydrogenase (ALDH) activity, characteristic of cancer and stem cells, is a property of LAM cells. METHODS: We performed an in silico search of ALDH genes in microdissected LAM lung nodules. To identify circulating LAM cells, we osmotically removed red blood cells from whole blood to obtain peripheral blood mononuclear cells, which were then sorted by fluorescence-activated cell sorting based on their level of ALDH activity. RESULTS: Microdissected LAM lung nodules possess a distinctive ALDH gene profile. The cell subpopulation with high ALDH activity, isolated from circulating cells, possessed TSC2 LOH in 8 of 14 patients with LAM. Approximately 60% of the circulating cells with high ALDH activity expressed CD44v6. Cells with TSC2 LOH from patients with LAM and LAM/TSC exhibited different properties in different body locations, but all cell types showed high ALDH activity. CONCLUSIONS: This new procedure allows for isolation of circulating LAM cells from cultured cells, blood, and chylous effusions and shows that circulating LAM cells are heterogeneous with neoplastic, metastatic, and cancer-stem cell-like properties.


Subject(s)
Aldehyde Dehydrogenase/metabolism , Loss of Heterozygosity/genetics , Lymphangioleiomyomatosis/enzymology , Lymphangioleiomyomatosis/genetics , Neoplastic Cells, Circulating/metabolism , Tuberous Sclerosis Complex 2 Protein/genetics , Humans , Lymphangioleiomyomatosis/pathology
15.
JACC Basic Transl Sci ; 4(1): 1-14, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30847414

ABSTRACT

Psoriasis is an inflammatory skin disease associated with increased cardiovascular risk and serves as a reliable model to study inflammatory atherogenesis. Because neutrophils are implicated in atherosclerosis development, this study reports that the interaction among low-density granulocytes, a subset of neutrophils, and platelets is associated with a noncalcified coronary plaque burden assessed by coronary computed tomography angiography. Because early atherosclerotic noncalcified burden can lead to fatal myocardial infarction, the low-density granulocyte-platelet interaction may play a crucial target for clinical intervention.

16.
JCI Insight ; 3(23)2018 12 06.
Article in English | MEDLINE | ID: mdl-30518681

ABSTRACT

New techniques for single-cell analysis have led to insights into hematopoiesis and the immune system, but the ability of these techniques to cross-validate and reproducibly identify the biological variation in diverse human samples is currently unproven. We therefore performed a comprehensive assessment of human bone marrow cells using both single-cell RNA sequencing and multiparameter flow cytometry from 20 healthy adult human donors across a broad age range. These data characterize variation between healthy donors as well as age-associated changes in cell population frequencies. Direct comparison of techniques revealed discrepancy in the quantification of T lymphocyte and natural killer cell populations. Orthogonal validation of immunophenotyping using mass cytometry demonstrated a strong correlation with flow cytometry. Technical replicates using single-cell RNA sequencing matched robustly, while biological replicates showed variation. Given the increasing use of single-cell technologies in translational research, this resource serves as an important reference data set and highlights opportunities for further refinement.


Subject(s)
Bone Marrow/immunology , Flow Cytometry/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Adaptive Immunity , Adult , Aged , Aged, 80 and over , Bone Marrow/metabolism , Bone Marrow Cells/immunology , Cell Differentiation , Female , Hematopoiesis , Humans , Immunophenotyping , Killer Cells, Natural , Male , Middle Aged , Reproducibility of Results , T-Lymphocytes , Young Adult
17.
Mol Metab ; 16: 160-171, 2018 10.
Article in English | MEDLINE | ID: mdl-30100246

ABSTRACT

OBJECTIVE: Beige/brite adipose tissue displays morphological characteristics and beneficial metabolic traits of brown adipose tissue. Previously, we showed that TGF-ß signaling regulates the browning of white adipose tissue. Here, we inquired whether TGF-ß signals regulated presumptive beige progenitors in white fat and investigated the TGF-ß regulated mechanisms involved in beige adipogenesis. METHODS: We deleted TGF-ß receptor 1 (TßRI) in adipose tissue (TßRIAdKO mice) and, using flow-cytometry based assays, identified and isolated presumptive beige progenitors located in the stromal vascular cells of white fat. These cells were molecularly characterized to examine beige/brown marker expression and to investigate TGF-ß dependent mechanisms. Further, the cells were transplanted into athymic nude mice to examine their adipogenesis potential. RESULTS: Deletion of TßRI promotes beige adipogenesis while reducing the detrimental effects of high fat diet feeding. Interaction of TGF-ß signaling with the prostaglandin pathway regulated the appearance of beige adipocytes in white fat. Using flow cytometry techniques and stromal vascular fraction from white fat, we isolated presumptive beige stem/progenitor cells (iBSCs). Upon genetic or pharmacologic inhibition of TGF-ß signaling, these cells express high levels of predominantly beige markers. Transplantation of TßRI-deficient stromal vascular cells or iBSCs into athymic nude mice followed by high fat diet feeding and stimulation of ß-adrenergic signaling via CL316,243 injection or cold exposure promoted robust beige adipogenesis in vivo. CONCLUSIONS: TßRI signals target the prostaglandin network to regulate presumptive beige progenitors in white fat capable of developing into beige adipocytes with functional attributes. Controlled inhibition of TßRI signaling and concomitant PGE2 stimulation has the potential to promote beige adipogenesis and improve metabolism.


Subject(s)
Adipocytes, Brown/cytology , Adipocytes, White/cytology , Receptor, Transforming Growth Factor-beta Type I/metabolism , Stem Cells/cytology , Adipocytes, Beige/cytology , Adipocytes, Beige/metabolism , Adipocytes, Brown/metabolism , Adipocytes, White/metabolism , Adipogenesis , Adipose Tissue, Beige/cytology , Adipose Tissue, Beige/metabolism , Adipose Tissue, Brown/cytology , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/cytology , Adipose Tissue, White/metabolism , Animals , Cell Differentiation/physiology , Diet, High-Fat , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism , Signal Transduction , Stem Cells/metabolism , Transforming Growth Factor beta1/metabolism
18.
Am J Physiol Gastrointest Liver Physiol ; 315(4): G495-G510, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29848020

ABSTRACT

Lgr5-expressing intestinal stem cells (ISCs) maintain continuous and rapid generation of the intestinal epithelium. Here, we present evidence that dedifferentiation of committed enteroendocrine cells (EECs) contributes to maintenance of the epithelium under both basal conditions and in response to injury. Lineage-tracing studies identified a subset of EECs that reside at +4 position for more than 2 wk, most of which were BrdU-label-retaining cells. Under basal conditions, cells derived from these EECs grow from the bottom of the crypt to generate intestinal epithelium according to neutral drift kinetics that is consistent with dedifferentiation of mature EECs to ISCs. The lineage tracing of EECs demonstrated reserve stem cell properties in response to radiation-induced injury with the generation of reparative EEC-derived epithelial patches. Finally, the enterochromaffin (EC) cell was the predominant EEC type participating in these stem cell dynamics. These results provide novel insights into the +4 reserve ISC hypothesis, stem cell dynamics of the intestinal epithelium, and in the development of EC-derived small intestinal tumors. NEW & NOTEWORTHY The current manuscript demonstrating that a subset of mature enteroendocrine cells (EECs), predominantly enterochromaffin cells, dedifferentiates to fully functional intestinal stem cells (ISCs) is novel, timely, and important. These cells dedifferentiate to ISCs not only in response to injury but also under basal homeostatic conditions. These novel findings provide a mechanism in which a specified cell can dedifferentiate and contribute to normal tissue plasticity as well as the development of EEC-derived intestinal tumors under pathologic conditions.


Subject(s)
Adult Stem Cells/cytology , Cell Differentiation , Cell Proliferation , Enteroendocrine Cells/cytology , Intestine, Small/cytology , Adult Stem Cells/metabolism , Animals , Cells, Cultured , Enteroendocrine Cells/metabolism , Intestine, Small/pathology , Mice , Mice, Inbred C57BL , Radiation Injuries, Experimental/pathology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
19.
AIDS Res Hum Retroviruses ; 34(7): 561-569, 2018 07.
Article in English | MEDLINE | ID: mdl-29732897

ABSTRACT

The CCAS EXPERT SUMMIT convened an array of international experts in Barbados on August 27-31, 2017 under the theme "From Care to Cure-Shifting the HIV Paradigm." The Caribbean Cytometry & Analytical Society (CCAS) partnered with the Joint United Nations Programme on HIV/AIDS (UNAIDS) to deliver a program that reviewed the advances in antiretroviral therapy and the public health benefits accruing from treatment as prevention. Particular emphasis was placed on reexamining stigma and discrimination through a critical appraisal of whether public health messaging and advocacy had kept pace with the advances in medicine. Persistent fear of HIV driving discriminatory behavior was widely reported in different regions and sectors, including the healthcare profession itself; continued fear of the disease was starkly misaligned with the successes of new medical treatments and progress toward the UNAIDS 90-90-90 targets. The summit therefore adopted the mantra "Test-Treat-Defeat" to help engage with the public in a spirit of optimism aimed at creating a more conducive environment for persons to be tested and treated and, thereby, help reduce HIV disease and stigma at the individual and community levels.


Subject(s)
Anti-Retroviral Agents/therapeutic use , Chemoprevention/methods , Disease Management , Disease Transmission, Infectious/prevention & control , HIV Infections/drug therapy , Barbados , Female , HIV Infections/prevention & control , Humans , Male , Societies, Scientific
SELECTION OF CITATIONS
SEARCH DETAIL
...